Pooled steganalysis in JPEG: how to deal with the spreading strategy?

Ahmad ZAKARIA^{1,2}, <u>Marc CHAUMONT</u>^{1,4}, Gérard SUBSOL^{1,3} LIRMM¹, Univ Montpellier², CNRS³, Univ Nîmes⁴, Montpellier, France

December 11, 2019

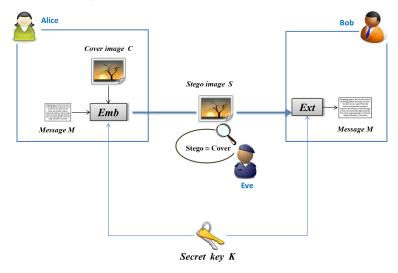
WIFS'2019, IEEE International Workshop on Information Forensics and Security, December 9-12, 2019, Delft, The Netherlands.

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

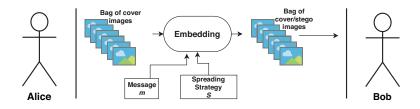
—Introduction

Outline

Introduction


Pooled steganalysis architecture

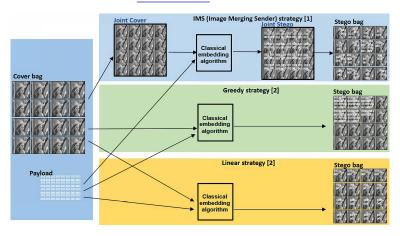
Experimental protocol


Results

Conclusions and perspectives

${\sf Steganography}\ /\ {\sf Steganalysis}$

Batch steganography / Pooled steganalysis

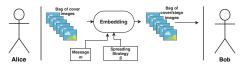


Alice:

- spreads a message $\mathbf{m} \in \{0,1\}^{|m|}$,
- in multiple covers,
- using a strategy $s \in \mathcal{S}$.

A. D. Ker, "Batch steganography and pooled steganalysis," in IH'06

Examples of possible spreading strategies



The 6 evaluated spreading strategies in this paper, $S = \{IMS, DeLS, DiLS, Greedy, Linear, and Uses - \beta\}$

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

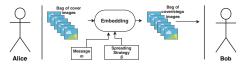
Lintroduction

Pooled steganalysis: how to deal with the spreading strategy?

Many possibilities for Alice to spread the message; What about Eve, the steganalyst?

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

—Introduction

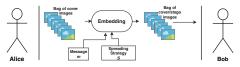

Pooled steganalysis: how to deal with the spreading strategy?

Many possibilities for Alice to spread the message; What about Eve, the steganalyst?

Recent approaches opt for **pooling** individual scores (more general)

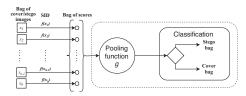
Pooled steganalysis: how to deal with the spreading strategy?

Many possibilities for Alice to spread the message; What about Eve, the steganalyst?


Recent approaches opt for **pooling** individual scores (more general)

Let us denote, f, a **Single Image Detector (SID)**;

For example a payload predictor (quantitative steganalysis):


$$f: \mathbb{R}^{r \times c} \to \mathbb{R}^+$$

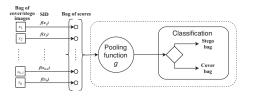
Pooled steganalysis: how to deal with the spreading strategy?

Many possibilities for Alice to spread the message; What about Eve, the steganalyst?

Recent approaches opt for pooling individual scores

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

—Introduction


Recent studies

- ▶ [1] Hypothesis: Eve <u>does not know</u> the spreading strategy ⇒ best pooling strategy = averaging the individual scores
- ► [2] Hypothesis: Eve <u>does know</u> the spreading strategy ⇒ knowledge of the strategy = improves steganalysis results.
- ► [3] Hypothesis: Eve <u>does know</u> the spreading strategy ⇒ knowledge of the strategy = improves steganalysis results.
- [1] R. Cogranne, "A sequential method for online steganalysis," in WIFS'2015.
- [2] T. Pevný and I. Nikolaev, "Optimizing pooling function for pooled steganalysis," in WIFS'2015.
- [3] R. Cogranne, V. Sedighi, and J. J. Fridrich, "Practical strategies for content-adaptive batch steganography and pooled steganalysis," in ICASSP'2017.

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

Lintroduction

The addressed question

Hypothesis: Eve <u>does not know</u> the spreading strategy.

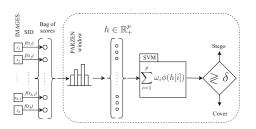
Can Eve "do better" than averaging the individual scores?

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

—Pooled steganalysis architecture

Outline

Introduction

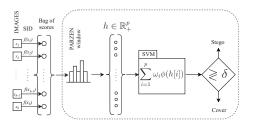

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives

T. Pevny and I. Nikolaev general architecture



Given a vector of SID scores $\mathbf{z} = \{f(x_1), ..., f(x_b)\}$:

$$\mathbf{h} = \left[\frac{1}{b} \sum_{f(x_i) \in \mathbf{z}} k(f(x_i), c_1), \dots, \frac{1}{b} \sum_{f(x_i) \in \mathbf{z}} k(f(x_i), c_p) \right],$$

with $\{c_i\}_{i=1}^p$ a set of equally spaced real positive values, and $k(x, y) = exp(-\gamma||x - y||^2)$.

T. Pevny and I. Nikolaev general architecture

- ► Histogram → can treat a bag of any dimension,
- lacktriangle Histogram ightarrow invariant to the sequential order in the bag.

The Single Image Detector (SID)

- Note: Alice embeds using J-UNIWARD (512×512 BossBase1.01 QF=75).
- Quantitative steganalysis in JPEG [1].
- GFR cleaned and normalized:
 - ► Gabor Features Residuals (GFR) of dimension 17 000 [2],
 - Clean cleaned from NaN values and from constant values → reduced to 16 750.
 - ▶ Normalize using random conditioning [3].

Learning: $5\ 000\ \text{covers} + 5\ 000\ \text{stego}$ per payload size $(\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}\ \text{bpc}).$

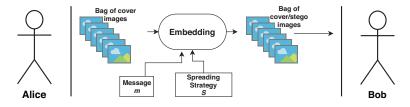
- [1] J. Kodovský and J. J. Fridrich, "Quantitative steganalysis using rich models," in El'2013 MWSF.
- [2] X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang, "Steganalysis of adaptive JPEG steganography using 2d gabor filters." in IH&MMSec'2015.
- [3] M. Boroumand and J. J. Fridrich, "Nonlinear feature normalization in steganalysis," in IH&MMSec 2017.
- Note: M. Chen, M. Boroumand, and J. J. Fridrich, "Deep learning regressors for quantitative steganalysis," in El'2018 MWSF, is more efficient.

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

Experimental protocol

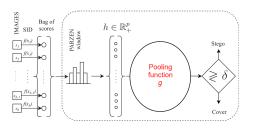
Outline

Introduction

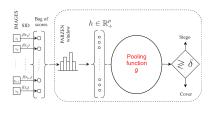

Pooled steganalysis architecture

Experimental protocol

Results


Conclusions and perspectives

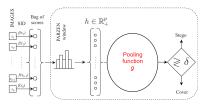
Alice: Batch spreading strategies


- 1. **Greedy strategy:** spreading into as few covers as possible.
- 2. Linear strategy: spreading evenly.
- 3. *Uses-* β **strategy:** spreading evenly across a fraction of covers.
- 4. IMS strategy: spreading in an unique artificial image.
- 5. **DeLS strategy:** spreading at the same deflection coefficient (MiPod model).
- 6. DiLS strategy: spreading at the same distortion.

Eve: Pooling strategies

- ▶ g_{clair} : Eve (clairvoyant) <u>knows</u> the spreading strategy. SVM learned on the known strategy $s \in \mathcal{S}$.
- ▶ g_{disc} : Eve (**discriminative**) <u>does not know</u> the spreading strategy. SVM learned on all the strategies S.
- g_{max} : Maximum function AND τ_{max} by minimizing P_e over S.
- g_{mean} : Average function AND τ_{min} by minimizing P_e over S.

Bags for the learning and for the test


g_{clair} (clairvoyant) learning:

- ► Choose **one** bag size $b \in \mathcal{B} = \{2, 4, 6, 10, 20, 50, 100, 200\}$,
- ▶ Choose **one** spreading strategies $s \in S$,
- ► Generate 5 000 cover bags and 5 000 stego bags (0.1 bptc).

g_{clair} testing:

- ► Choose **the same** bag size *b*,
- ► Choose **the same** spreading strategies *s*,
- ► Generate 5 000 cover bags and 5 000 stego bags (0.1 bptc).

Bags for the learning and for the test

 g_{disc} (discriminative), g_{max} , and g_{mean} learning:

- ► Choose **one** bag size $b \in \mathcal{B} = \{2, 4, 6, 10, 20, 50, 100, 200\}$,
- ▶ Choose all the spreading strategies from S,
- Generate 5 000 cover bags and 5 000 stego bags.
 833 bags per strategy (0.1 bptc).

 g_{disc} (discriminative), g_{max} , and g_{mean} testing:

- Choose the same bag size b,
- ▶ Choose **one** spreading strategies $s \in \mathcal{S}$ (**unknown from Eve**),
- ► Generate 5 000 cover bags and 5 000 stego bags (0.1 bptc).

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

— Results

Outline

Introduction

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives

Alice: Spreading strategies comparison (Eve clairvoyant)

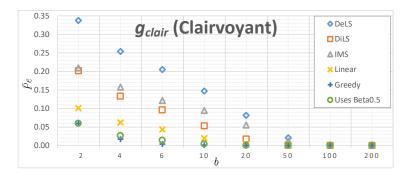


Figure: Spreading strategies comparison in the clairvoyant case (10 runs).

Eve: Pooling function comparisons

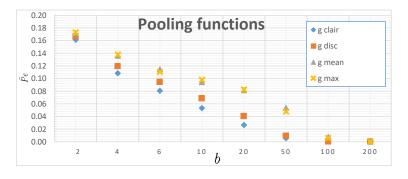


Figure: Pooled steganalysis comparison (10 runs).

Outline

Introduction

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

— Conclusions and perspectives

Conclusions

Up-to-date algorithms:

- modern embedding (J-Uniward),
- 6 spreading strategies (3 moderns),
- modern (generic) pooling architecture.
- \rightarrow Coherent results with past papers.

The take away messages:

- For Alice: DeLS is a really interesting spreading strategy.
- For Eve: g_{disc} pooling can improve the detectability if Eve <u>does not know</u> the spreading strategy.

To be continued...

Future:

- DeLS with a DCT model,
- Robustness to the bag size variation (learn only once with various size),
- Robustness to the mismatch in the spreading strategy (uses a different strategy in the test; Examples in [1]),
- ▶ Minimize the Pe (for g_{disc}) differently for each strategy,
- Use something more powerful than an SVM,
- Extend to deep learning,
- Go toward a simulation of a game (GAN philosophy),
- [1] X. Liao, J. Yin, "Two Embedding Strategies for Payload Distribution in Multiple Images Steganography", in ICASSP'2018.